A Constructive Approach to Sylvester's Conjecture

نویسنده

  • Jan von Plato
چکیده

Sylvester’s conjecture states that, given n distinct noncollinear points in a plane, there exists a connecting line of two of the points such that no other point is incident with the line. First a proof is given of the six-point Sylvester conjecture from a constructive axiomatization of plane incidence geometry. Next ordering principles are studied that are needed for the seven-point case. This results in a symmetrically ordered plane affine geometry. A corollary is the axiom of complete quadrangles. Finally, it is shown that the problem admits of an arithmetic translation by which Sylvester’s conjcture is decidable for any n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

متن کامل

A Constructive Semantic Approach to Cut Elimination in Type Theories with Axioms

We give a fully constructive semantic proof of cut elimination for intuitionistic type theory with axioms. The problem here, as with the original Takeuti conjecture, is that the impredicativity of the formal system involved makes it impossible to define a semantics along conventional lines, in the absence, a priori, of cut, or to prove completeness by induction on subformula structure. In addit...

متن کامل

A Generalized Sylvester Identity and Fraction-free Random Gaussian Elimination

Sylvester's identity is a well-known identity which can be used to prove that certain Gaussian elimination algorithms are fraction-free. In this paper we will generalize Sylvester's identity and use it to prove that certain random Gaussian elimination algorithms are fraction-free. This can be used to yield fraction-free algorithms for solving Ax = b (x 0) and for the simplex method in linear pr...

متن کامل

A generalization of Sylvester's identity

We consider a new generalization of Euler's and Sylvester's identities for partitions. Our proof is based on an explicit bijection.

متن کامل

Constructive Dynamisms of Large-Scale Urban Projects by the Space Political Economy Approach; a Case Study of Mashhad Metropolis

Aims: The development of large-scale construction projects has transformed the shape of cities towards specific objectives and based on economic and political perspectives that dominate policy-making and planning in cities. The purpose of the research was to study and analyze the spatiality of Mashhad construction mega-projects and to explain the constructive forces and dynamisms of these proje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. UCS

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2005